Tight-Binding Model for Spontaneous Magnetism of Quantum Dot Lattices

نویسندگان

  • P. Koskinen
  • L. Sapienza
  • M. Manninen
چکیده

We use a simple tight-binding model to study the magnetism of twodimensional quantum dot lattices with 1 to 12 electrons per dot. The results show that in the middle of an electron shell the lattice favours antiferromagnetism while with nearly empty or full shells ferromagnetism is favoured. The size of the antiferromagnetic region increases with the coordination number of the dot. A one-dimensional dot lattice shows a spin-Peierls transition. The results for a square lattice are in good agreement with density functional calculations of Koskinen et al. [13].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-Controlled Entanglement between Quantum- Dot Molecule and its Spontaneous Emission Fields via Quantum Entropy

The time evolution of the quantum entropy in a coherently driven threelevel quantum dot (QD) molecule is investigated. The entanglement of quantum dot molecule and its spontaneous emission field is coherently controlled by the gat voltage and the intensity of applied field. It is shown that the degree of entanglement between a three-level quantum dot molecule and its spontaneous emission fields...

متن کامل

Time-Dependent Real-Space Renormalization Group Method

In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...

متن کامل

Quantization of electromagnetic fields in the presence of a spherical semiconductor quantum dot and spontaneous decay of an excited atom doped in this nanostructure

In this paper we consider electromagnetic field quantization in the presence of a dispersive and absorbing semiconductor quantum dot. By using macroscopic approach and Green's function method, quantization of electromagnetic field is investigated. Interaction of a two-level atom , which is doped in a semiconductor quantum dot, with the quantized field is considered and its spontaneous emission ...

متن کامل

Coulomb effects on the transmittance of open quantum dots in a tight-binding model

A quantum-mechanical calculation of conductance in an open quantum dot is performed in the Landauer-Büttiker formalism using a tight binding Hamiltonian with direct Coulomb interaction. The charge distribution in the dot is calculated self-consistently as function of a gate potential, for various dot-leads couplings. The interaction is active only inside the dot, but not in the leads, its stren...

متن کامل

The effect of first order magnetic field in a GaAs/AlAs spherical quantum dot with hydrogenic impurity

In this research, the effect of the first order magnetic field on the ground-state of a centered hydrogenic donor impurity in a GaAs/AlAs spherical quantum dot has been calculated. The perturbation method has been used within the framework of effective mass approximation for these calculations. Overall, the analysis shows that a proper choice of quantum dot radius and magnetic field can signifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003